Apr 23, 2020

Duplication accelerates the evolution of structural complexity in protein quaternary structure

BioRxiv : the Preprint Server for Biology
Alexander S Leonard, S. E. Ahnert

Abstract

Gene duplication, from single genes to whole genomes, has been observed in organisms across all taxa. Despite its prevalence, the evolutionary benefits of this mechanism are the subject of ongoing debate. Gene duplication can significantly alter the self-assembly of protein quaternary structures, impacting the dosage or interaction proclivity. Here we use a lattice model of self-assembly as a coarse-grained representation of protein complex assembly, and show that it can be used to examine potential evolutionary advantages of duplication. Duplication provides a unique mechanism for increasing the evolvability of protein complexes by enabling the transformation of symmetric homomeric interactions into heteromeric ones. This transformation is extensively observed in in silico evolutionary simulations of the lattice model, with duplication events significantly accelerating the rate at which structural complexity increases. These coarse-grained simulation results are corroborated with a large-scale analysis of complexes from the Protein Data Bank.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Repetitive Region
Genome
Genes
Nucleic Acid Sequencing
Sequencing
Genes, Bacterial
Reading Frames (Nucleotide Sequence)
probe gene fragment
Molecular Genetic Technique
Pathogenicity Islands

Related Feeds

CRISPR & Staphylococcus

CRISPR-Cas system enables the editing of genes to create or correct mutations. Staphylococci are associated with life-threatening infections in hospitals, as well as the community. Here is the latest research on how CRISPR-Cas system can be used for treatment of Staphylococcal infections.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

© 2020 Meta ULC. All rights reserved