Apr 13, 2020

Zirconium(IV)-IMAC for phosphopeptide enrichment in phosphoproteomics

BioRxiv : the Preprint Server for Biology
I. Arribas DiezOle Noerregaard Jensen


Phosphopeptide enrichment is an essential step in large-scale, quantitative phosphoproteomics studies by mass spectrometry. Several phosphopeptide affinity enrichment techniques exist, such as Immobilized Metal ion Affinity Chromatography (IMAC) and Metal Oxide Affinity Chromatography (MOAC). We compared Zirconium (IV) IMAC (Zr-IMAC) magnetic microspheres to commonly used Titanium (IV) IMAC (Ti-IMAC) and TiO2 magnetic microspheres for phosphopeptide enrichment from simple and complex protein samples prior phosphopeptide sequencing and characterization by mass spectrometry (LC-MS/MS). We optimized sample-loading conditions to increase phosphopeptide recovery for Zr-IMAC, Ti-IMAC and TiO2 based workflows. The performance of Zr-IMAC was enhanced by 19-22% to recover up to 5173 phosphopeptides from 200 ug of protein extract from HepG2/C3A cells, making Zr-IMAC the preferred method for phosphopeptide enrichment in this study. Ti-IMAC and TiO2 performance were also optimized to improve phosphopeptide numbers by 28% and 35%, respectively. Furthermore, Zr-IMAC based phosphoproteomics in the magnetic microsphere format identified 23% more phosphopeptides than HPLC-based Fe(III)-IMAC for same sample amount (200 ug), thereby adding 37% mo...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Pathogenic Organism
Entire Embryo
Methanogenium marinum
Experimental drug
Screening Generic

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.