Jan 23, 2015

Segmentation of Noisy Signals Generated By a Nanopore

BioRxiv : the Preprint Server for Biology
Jacob Matthew Schreiber, Kevin Karplus

Abstract

Nanopore-based single-molecule sequencing techniques exploit ionic current steps produced as biomolecules pass through a pore to reconstruct properties of the sequence. A key task in analyzing complex nanopore data is discovering the boundaries between these steps, which has traditionally been done in research labs by hand. We present an automated method of analyzing nanopore data, by detecting regions of ionic current corresponding to the translocation of a biomolecule, and then segmenting the region. The segmenter uses a divide-and-conquer method to recursively discover boundary points, with an implementation that works several times faster than real time and that can handle low-pass filtered signals.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Biologic Segmentation
Research
Ion Channel
Sequencing
Nuclear Translocation
Pore
Intracellular Translocation
Anatomical Segmentation
Chromosomal Translocation
Cellular Translocation

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.