Aug 8, 2006

SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis

The Plant Journal : for Cell and Molecular Biology
Li YangHai Huang

Abstract

The Arabidopsis gene SERRATE (SE) controls leaf development, meristem activity, inflorescence architecture and developmental phase transition. It has been suggested that SE, which encodes a C(2)H(2) zinc finger protein, may change gene expression via chromatin modification. Recently, SE has also been shown to regulate specific microRNAs (miRNAs), miR165/166, and thus control shoot meristem function and leaf polarity. However, it remains unclear whether and how SE modulates specific miRNA processing. Here we show that the se mutant exhibits some similar developmental abnormalities as the hyponastic leaves1 (hyl1) mutant. Since HYL1 is a nuclear double-stranded RNA-binding protein acting in the DICER-LIKE1 (DCL1) complex to regulate the first step of primary miRNA transcript (pri-miRNA) processing, we hypothesized that SE could play a previously unrecognized and general role in miRNA processing. Genetic analysis supports that SE and HYL1 act in the same pathway to regulate plant development. Consistently, SE is critical for the accumulation of multiple miRNAs and the trans-acting small interfering RNA (ta-siRNA), but is not required for sense post-transcriptional gene silencing. We further demonstrate that SE is localized in the ...Continue Reading

  • References42
  • Citations165

References

  • References42
  • Citations165

Citations

Mentioned in this Paper

Zinc Fingers
Biochemical Pathway
Arabidopsis
RNA, Small Interfering
Primary MicroRNA
Meristem
Leaf Development
Genetic Analysis
Genetic Screening Method
RNA, Small Temporal

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Coronavirus Protein Structures

Deciphering and comparing the proteins of different coronaviruses forms a basis for understanding SARS-CoV-2 evolution and virus-receptor interactions. This feed follows studies analyzing the structures of coronavirus proteins, thereby revealing potential drug target sites.

DDX3X Syndrome

DDX3X syndrome is caused by a spontaneous mutation at conception that primarily affects girls due to its location on the X-chromosome. DDX3X syndrome has been linked to intellectual disabilities, seizures, autism, low muscle tone, brain abnormalities, and slower physical developments. Here is the latest research.

ALS: Stress Granules

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by cytoplasmic protein aggregates within motor neurons. TDP-43 is an ALS-linked protein that is known to regulate splicing and storage of specific mRNAs into stress granules, which have been implicated in formation of ALS protein aggregates. Here is the latest research.

Fusion Oncoproteins in Childhood Cancers

This feed explores the function of fusion oncoproteins in specific childhood cancers, including those from racial/ethnic minority and underserved groups, and to provide preclinical assessment of potential therapeutics and how fusion oncoproteins influence gene expression to perturb normal cellular programs to block lineage differentiation and development

Applications of Molecular Barcoding

The concept of molecular barcoding is that each original DNA or RNA molecule is attached to a unique sequence barcode. Sequence reads having different barcodes represent different original molecules, while sequence reads having the same barcode are results of PCR duplication from one original molecule. Discover the latest research on molecular barcoding here.

Regulation of Vocal-Motor Plasticity

Dopaminergic projections to the basal ganglia and nucleus accumbens shape the learning and plasticity of motivated behaviors across species including the regulation of vocal-motor plasticity and performance in songbirds. Discover the latest research on the regulation of vocal-motor plasticity here.

Mitotic-exit networks with cytokinesis

Cytokinesis is the highly regulated process that physically separates daughter and mother cells in late mitosis. The mitotic-exit network (MEN), the signalling pathway that drives mitotic exit, directly regulates cytokinesis. Discover the latest research on mitotic-exit networks with cytokinesis here.

DNA Replication Origin

DNA replication is initiated as specific gene sequences, called origins, that function to start DNA replication. Pre-replication complexes are assembled at these origins during the G1 phase of the cell cycle. These sequences allow for targeted activation or deactivation of replication. Discover the latest research on DNA replication origins here.

Related Papers

Proceedings of the National Academy of Sciences of the United States of America
Zhicheng DongNina Fedoroff
Proceedings of the National Academy of Sciences of the United States of America
Sascha LaubingerDetlef Weigel
Proceedings of the National Academy of Sciences of the United States of America
Meng-Hsuan HanNina Fedoroff
Annual Review of Plant Biology
Matthew W Jones-RhoadesBonnie Bartel
© 2020 Meta ULC. All rights reserved