Nov 4, 2018

SHARP: Single-cell RNA-seq Hyper-fast and Accurate Processing via Ensemble Random Projection

BioRxiv : the Preprint Server for Biology
Shibiao WanKyoung Jae Won

Abstract

To process large-scale single-cell RNA-sequencing (scRNA-seq) data effectively without excessive distortion during dimension reduction, we present SHARP, an ensemble random projection-based algorithm which is scalable to clustering 10 million cells. Comprehensive benchmarking tests on 17 public scRNA-seq datasets demonstrate that SHARP outperforms existing methods in terms of speed and accuracy. Particularly, for large-size datasets (>40,000 cells), SHARP's running speed far excels other competitors while maintaining high clustering accuracy and robustness. To the best of our knowledge, SHARP is the only R-based tool that is scalable to clustering scRNA-seq data with 10 million cells.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Sequence Determinations, RNA
Sequence Determinations
SPEN protein, human
Sequencing
RNA, Small Cytoplasmic
Reduction - Action
Abnormal Shape
Gene Feature
Randomization

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.