Signatures of cell death and proliferation in perturbation transcriptomics data - from confounding factor to effective prediction

BioRxiv : the Preprint Server for Biology
Bence SzalaiJulio Saez-Rodriguez


Transcriptomics perturbation signatures are valuable data sources for functional genomic studies. They can be effectively used to identify mechanism of action for new compounds and to infer functional activity of different cellular processes. Linking perturbation signatures to phenotypic studies opens up the possibility to model selected cellular phenotypes from gene expression data and to predict drugs interfering with the phenotype. At the same time, close association of transcriptomics changes with phenotypes can potentially mask the compound specific signatures. By linking perturbation transcriptomics data from the LINCS-L1000 project with cell viability phenotypic information upon genetic (from Achilles project) and chemical (from CTRP screen) perturbations for more than 90,000 signature - cell viability pairs, we show here that a cell death signature is a major factor behind perturbation signatures. We use this relationship to effectively predict cell viability from transcriptomics signatures, and identify compounds that induce either cell death or proliferation. We also show that cellular toxicity can lead to an unexpected similarity of toxic compound signatures confounding the mechanism of action discovery. Consensus co...Continue Reading

Related Concepts

Antineoplastic Agents
Cell Death
Cell Survival
Projections and Predictions
Gene Expression
Cell Line, Tumor
Cell-Mediated Cytolysis
Cell Proliferation

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Alzheimer's Disease: MS4A

Variants within the membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease in genome-wide association studies. Here is the latest research on Alzheimer's disease and MS4A.

Pediculosis pubis

Pediculosis pubis is a disease caused by a parasitic insect known as Pthirus pubis, which infests human pubic hair, as well as other areas with hair including eye lashes. Here is the latest research.

Rh Isoimmunization

Rh isoimmunization is a potentially preventable condition that occasionally is associated with significant perinatal morbidity or mortality. Discover the latest research on Rh Isoimmunization here.

Genetic Screens in iPSC-derived Brain Cells

Genetic screening is a critical tool that can be employed to define and understand gene function and interaction. This feed focuses on genetic screens conducted using induced pluripotent stem cell (iPSC)-derived brain cells. It also follows CRISPR-Cas9 approaches to generating genetic mutants as a means of understanding the effect of genetics on phenotype.

Enzyme Evolution

This feed focuses on molecular models of enzyme evolution and new approaches (such as adaptive laboratory evolution) to metabolic engineering of microorganisms. Here is the latest research.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Pharmacology of Proteinopathies

This feed focuses on the pharmacology of proteinopathies - diseases in which proteins abnormally aggregate (i.e. Alzheimer’s, Parkinson’s, etc.). Discover the latest research in this field with this feed.

Alignment-free Sequence Analysis Tools

Alignment-free sequence analyses have been applied to problems ranging from whole-genome phylogeny to the classification of protein families, identification of horizontally transferred genes, and detection of recombined sequences. Here is the latest research.