Simultaneous mesoscopic and two-photon imaging of neuronal activity in cortical circuits

BioRxiv : the Preprint Server for Biology
Daniel BarsonMichael Higley

Abstract

Spontaneous and sensory-evoked activity propagates across spatial scales in the mammalian cortex but technical challenges have generally precluded establishing conceptual links between the function of local circuits of neurons and brain-wide network dynamics. To solve this problem, we developed a method for simultaneous cellular-resolution two-photon calcium imaging of a local microcircuit and mesoscopic widefield calcium imaging of the entire cortical mantle in awake, behaving mice. Our method employs an orthogonal axis design whereby the mesoscopic objective is oriented downward directly above the brain and the two-photon objective is oriented horizontally, with imaging performed through a glass right angle microprism implanted in the skull. In support of this method, we introduce a suite of analysis tools for relating the activity of individual cells to distal cortical areas, as well as a viral method for robust and widespread gene delivery in the juvenile mouse brain. We use these methods to characterize the diversity of associations of individual, genetically-defined neurons with cortex-wide network motifs.

Related Concepts

Body Regions
Brain
Cerebral Cortex
Diagnostic Imaging
Evoked Potentials
Laboratory mice
Neuronitis
Neurons
Bone Structure of Cranium
Horizontal

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.