Sep 1, 2018

Single-cell analysis of progenitor cell dynamics and lineage specification in the human fetal kidney

Development
Rajasree MenonCristina Cebrian

Abstract

The mammalian kidney develops through reciprocal interactions between the ureteric bud and the metanephric mesenchyme to give rise to the entire collecting system and the nephrons. Most of our knowledge of the developmental regulators driving this process arises from the study of gene expression and functional genetics in mice and other animal models. In order to shed light on human kidney development, we have used single-cell transcriptomics to characterize gene expression in different cell populations, and to study individual cell dynamics and lineage trajectories during development. Single-cell transcriptome analyses of 6414 cells from five individual specimens identified 11 initial clusters of specific renal cell types as defined by their gene expression profile. Further subclustering identifies progenitors, and mature and intermediate stages of differentiation for several renal lineages. Other lineages identified include mesangium, stroma, endothelial and immune cells. Novel markers for these cell types were revealed in the analysis, as were components of key signaling pathways driving renal development in animal models. Altogether, we provide a comprehensive and dynamic gene expression profile of the developing human kidn...Continue Reading

Mentioned in this Paper

Single-Cell Analysis
Fetal Kidney
Biological Markers
Study
Biochemical Pathway
Microarray Analysis
Fetal Structures
Immune Effector Cell
Epithelial Cell of Renal Tubule
Stroma

Related Feeds

Single-Cell RNA Sequencing: Kidney and Organoids

Single-cell RNA sequencing of the adult human kidney transcriptome can provide molecular information about cell-specific responses to environmental variables and disease states. This information can provide a dataset to benchmark human kidney organoids. Discover the latest research on adult kidney organoids at single cell resolution here.

Cell-Type Specific Viral Vectors

Viral vectors are used in biological research and therapy to deliver genetic material into cells. However, the efficiency of viral vectors varies depending on the cell type. Here is the latest research on cell-type-specific viral vectors.

Cell-Type-Specific Viral Vectors

Viral vectors are used in biological research and therapy to deliver genetic material into cells. However, the efficiency of viral vectors varies depending on the cell type. Here is the latest research on cell-type-specific viral vectors.

Adult Stem Cells

Adult stem cells reside in unique niches that provide vital cues for their survival, self-renewal, and differentiation. They hold great promise for use in tissue repair and regeneration as a novel therapeutic strategies. Here is the latest research.

Cell-Type-Specific Viral Vectors (ASM)

Viral vectors are used in biological research and therapy to deliver genetic material into cells. However, the efficiency of viral vectors varies depending on the cell type. Here is the latest research on cell-type-specific viral vectors.

Related Papers

Pediatric Nephrology : Journal of the International Pediatric Nephrology Association
Sijo MathewRoy Zent
Anatomy & Cell Biology
Ok-Hee ChaiEui-Sic Cho
Pediatric Nephrology : Journal of the International Pediatric Nephrology Association
Deneen M Wellik
© 2020 Meta ULC. All rights reserved