Mar 17, 2020

Single-cell transcriptomic analysis of the adult mouse spinal cord

bioRxiv
Jacob BlumAaron D Gitler

Abstract

The spinal cord is a fascinating structure responsible for coordinating all movement in vertebrates. Spinal motor neurons control the activity of virtually every organ and muscle throughout the body by transmitting signals that originate in the spinal cord. These neurons are remarkably heterogeneous in their activity and innervation targets. However, because motor neurons represent only a small fraction of cells within the spinal cord and are difficult to isolate, the full complement of motor neuron subtypes remains unknown. Here we comprehensively describe the molecular heterogeneity of motor neurons within the adult spinal cord. We profiled 43,890 single-nucleus transcriptomes using fluorescence-activated nuclei sorting to enrich for spinal motor neuron nuclei. These data reveal a transcriptional map of the adult mammalian spinal cord and the first unbiased characterization of all transcriptionally distinct autonomic and somatic spinal motor neuron subpopulations. We identify 16 sympathetic motor neuron subtypes that segregate spatially along the spinal cord. Many of these subtypes selectively express specific hormones and receptors, suggesting neuromodulatory signaling within the autonomic nervous system. We describe skeleta...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Fluorescence-Activated Cell Sorting
Spinal
Neurons
Nerve Supply
Body Structure
Transcription, Genetic
Biological Markers
Muscle
Isolate - Microorganism
Cell Nucleus

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

BioHub - Researcher Network

The Chan-Zuckerberg Biohub aims to support the fundamental research and develop the technologies that will enable physicians to cure, prevent, or manage all diseases in our childrens' lifetimes. The CZ Biohub brings together researchers from UC Berkeley, Stanford, and UCSF. Find the latest research from the CZ Biohub researcher network here.