Single-chromosome aneuploidy commonly functions as a tumor suppressor

BioRxiv : the Preprint Server for Biology
Jason Meyer SheltzerAngelika Amon


Whole-chromosome aneuploidy is a hallmark of human malignancies. The prevalence of chromosome segregation errors in cancer - first noted more than 100 years ago - has led to the widespread belief that aneuploidy plays a crucial role in tumor development. Here, we set out to test this hypothesis. We transduced congenic euploid and trisomic fibroblasts with 14 different oncogenes or oncogene combinations, thereby creating genetically-matched cancer cell lines that differ only in karyotype. Surprisingly, nearly all aneuploid cell lines divided slowly in vitro, formed few colonies in soft agar, and grew poorly as xenografts, relative to matched euploid lines. Similar results were obtained when comparing a near-diploid human colorectal cancer cell line with derivatives of that line that harbored extra chromosomes. Only a few aneuploid lines grew at close to wild-type levels, and no aneuploid line exhibited greater tumorigenic capabilities than its euploid counterpart. These results demonstrate that rather than promoting tumorigenesis, aneuploidy, particularly single chromosome gains, can very often function as a tumor suppressor. Moreover, our results suggest one potential way that cancers can overcome the tumor suppressive effects ...Continue Reading

Related Concepts

In Vivo
Body Part
Tumor Suppressor Genes
Specimen Type - Fibroblasts
XYY Karyotype

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Cancer Genomics (Preprints)

Cancer genomics employ high-throughput technologies to identify the complete catalog of somatic alterations that characterize the genome, transcriptome and epigenome of cohorts of tumor samples. Discover the latest preprints here.