Sep 17, 2014

Single molecule-level detection and long read-based phasing of epigenetic variations in bacterial methylomes

BioRxiv : the Preprint Server for Biology
John BeaulaurierGang Fang


Comprehensive genome-wide analyses of bacterial DNA methylation have not been possible until the recent advent of single molecule, real-time (SMRT) sequencing. This technology enables the direct detection of N6-methyladenine (6mA) and 4-methylcytosine (4mC) at single nucleotide resolution on a genome-wide scale. The distributions of these two major types of DNA methylation, along with 5-methylcytosine (5mC), comprise the bacterial methylome, some rare exceptions notwithstanding. SMRT sequencing has already revealed marked diversity in bacterial methylomes as well as the existence of heterogeneity of methylation in cells in single bacterial colonies, where such ‘epigenetic’ variation can enable bacterial populations to rapidly adapt to changing conditions. However, current methods for studying bacterial methylomes using SMRT sequencing mainly rely on population-level summaries that do not provide the single-cell resolution necessary for dissecting the epigenetic heterogeneity in bacterial populations. Here, we present a novel SMRT sequencing-based framework, consisting of two complementary methods, for single molecule-level detection of DNA methylation and assessment of methyltransferase activity through single molecule-level lo...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Genome-Wide Association Study
DNA Methylation [PE]
Bacterial Proteins
NCOR2 wt Allele
Protein Methylation
DNA Methylation
Nucleic Acid Sequencing
Single Molecule Imaging

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.