Social evolution and genetic interactions in the short and long term

BioRxiv : the Preprint Server for Biology
Jeremy Van Cleve


The evolution of social traits remains one of the most fascinating and feisty topics in evolutionary bi-ology even after half a century of theoretical research. W. D. Hamilton shaped much of the field initially with his 1964 papers that laid out the foundation for understanding the effect of genetic relatedness on the evolution of social behavior. Early theoretical investigations revealed two critical assumptions required for Hamilton’s rule to hold in dynamical models: weak selection and additive genetic interactions. However, only recently have analytical approaches from population genetics and evolutionary game theory developed sufficiently so that social evolution can be studied under the joint action of selection, mutation, and genetic drift. We review how these approaches suggest two timescales for evolution under weak mutation: (i) a short-term timescale where evolution occurs between a finite set of alleles, and (ii) a long-term timescale where a continuum of alleles are possible and populations evolve continuously from one monomorphic trait to another. We show how Hamilton’s rule emerges from the short-term analysis under additivity and how non-additive genetic interactions can be accounted for more generally. This sho...Continue Reading

Related Concepts

Analogs & derivatives
Biological Evolution
Theoretical Study
Hamilton Rating Scale for Depression
Drug Interactions
Eye Convergence
Genetic Drift

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.