DOI: 10.1101/512798Jan 7, 2019Paper

Soil Bacterial and Fungal Response to Wildfires in the Canadian Boreal Forest Across a Burn Severity Gradient

BioRxiv : the Preprint Server for Biology
Thea WhitmanMarc-André Parisien


Global fire regimes are changing, with increases in wildfire frequency and severity expected for many North American forests over the next 100 years. Fires can result in dramatic changes to C stocks and can restructure plant and microbial communities, which can have long-lasting effects on ecosystem functions. We investigated wildfire effects on soil microbial communities (bacteria and fungi) in an extreme fire season in the northwestern Canadian boreal forest, using field surveys, remote sensing, and high-throughput amplicon sequencing. We found that fire occurrence, along with vegetation community, moisture regime, pH, total carbon, and soil texture are all significant predictors of soil microbial community composition. Communities become increasingly dissimilar with increasingly severe burns, and the burn severity index (an index of the fractional area of consumed organic soils and exposed mineral soils) best predicted total bacterial community composition, while burned/unburned was the best predictor for fungi. Globally abundant taxa were identified as significant positive fire responders, including the bacteria Massilia sp. (64x more abundant with fire) and Arthrobacter sp. (35x), and the fungi Penicillium sp. (22x) and Fu...Continue Reading

Related Concepts

Burn Injury
High Throughput Analysis
Arthrobacter species
Location - Remote

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.