Jun 1, 1976

Some chemical aspects of histamine H2-receptor antagonists

Federation Proceedings
C R GanellinJ C Emmett

Abstract

Certain chemical properties, which may determine the biological actions of the recently discovered histamine H2-receptor antagonists burimamide and metiamide, are identified, partly by considering the derivation of these antagonists. Examples are given of attempts to design antagonists using histamine as starting point. A partial agonist was eventually obtained through modifying the side chain of histamine but retaining the imidazole ring. Further developments led to the synthesis of uncharged thioureido analogues and to the discovery of the antagonist, burimamide. Consideration of the relative concentration of imidazole tautomers led to the replacement of a methylene group (-CH2-) with an isosteric thioether (-S-) link in the side chain, and incorporation of a methyl group in the imidazole ring; these changes afforded metiamide, an orally active antagonist. These developments emphasize that the imidazole ring appears to have a special importance at H2 receptors. Burimamide and metiamide are hydrophilic molecules that resemble histamine in having an imidazole ring but differ in the side chain which, though polar, is uncharged. By contrast, the H1-receptor antihistaminic drugs are lipophilic molecules; their resemblance to hista...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Histamine Measurement
Histamine H2 Receptors
Metiamide Monohydrochloride
Structure-Activity Relationship
Antagonist Muscle Action
Histamine Receptor
Entire Central Nervous System
Dicom Derivation
Receptors, Drug
Thioethers

About this Paper

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.