Mar 2, 2019

SP1-mediated upregulation of lncRNA ILF3-AS1 functions a ceRNA for miR-212 to contribute to osteosarcoma progression via modulation of SOX5

Biochemical and Biophysical Research Communications
Xiao-Hui HuYue-Dong Hao


Long noncoding RNA ILF3-AS1 (ILF3-AS1) has been reported to be abnormally expressed in several tumors. However, its expression pattern and function in osteosarcoma have not been investigated. In this study, we showed that ILF3-AS1 expression was significantly up-regulated in both osteosarcoma tissues and cell lines. We first reported that ILF3-AS1 upregulation was induced by nuclear transcription factor SP1. Clinical assays revealed that higher expression of ILF3-AS1 was associated with advanced clinical stage, distant metastasis and shorter overall survival. in multivariate analysis, ILF3-AS1 expression level was found to be an independent prognostic factor for osteosarcoma patients. Functional investigations showed that knockdown of ILF3-AS1 suppressed the proliferation, migration and invasion of osteosarcoma cells, and promoted apoptosis. Bioinformatic software predicted that miR-212 both targeted the 3'-UTR of ILF3-AS1 and SOX5, which was confirmed using luciferase reporter assay, RT-PCR and Western blot. Taken together, ILF3-AS1 displayed its tumor-promotive roles in the progression of osteosarcoma through miR-212/SOX5 axis. Our findings help to elucidate the tumorigenesis of osteosarcoma, and future study will provide a n...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Computer Software
ILF3-AS1 gene
Gene Knockdown Techniques
Western Blotting
Reverse Transcriptase Polymerase Chain Reaction
Cell Proliferation
MIR212 gene

Related Feeds

Apoptosis in Cancer

Apoptosis is an important mechanism in cancer. By evading apoptosis, tumors can continue to grow without regulation and metastasize systemically. Many therapies are evaluating the use of pro-apoptotic activation to eliminate cancer growth. Here is the latest research on apoptosis in cancer.


Apoptosis is a specific process that leads to programmed cell death through the activation of an evolutionary conserved intracellular pathway leading to pathognomic cellular changes distinct from cellular necrosis

Cell Migration

Cell migration is involved in a variety of physiological and pathological processes such as embryonic development, cancer metastasis, blood vessel formation and remoulding, tissue regeneration, immune surveillance and inflammation. Here is the latest research.