Jul 1, 1989

Specific killing of human melanoma cells with an efficient 10B-compound on monoclonal antibodies

Pigment Cell Research
A KomuraY Mishima

Abstract

We previously established methods which have enabled us to target a sufficient number of 10B atoms on human melanoma cells to destroy them by thermal neutron irradiation. Monoclonal antibodies were here used as vector of 10B atoms on the target cell. Thermal neutrons require at least 10(9) 10B atoms to destroy the cell. In order to accumulate an adequate number of 10B atoms on target cells, our first approach was to make an effective compound that contains 12 atoms of 10B in a molecule. The second step was to conjugate the compound with an avidin molecule (10B12-avidin). One molecule of the 10B12-avidin carries about 30 atoms of 10B. This 10B12-avidin can be specifically targeted on human melanoma cells by biotinated monoclonal antibodies specific for the cells. Furthermore, the number of 10B atoms on target cells can be augmented by a hapten-antihapten monoclonal antibody system. The cultured human melanoma cells treated with these methods were damaged by thermal neutron irradiation. This is the first study that indicates thermal neutrons do injure target cells boronated by monoclonal antibodies.

  • References4
  • Citations1

Mentioned in this Paper

Malignant Neoplasm of Skin
Monoclonal Antibodies
Borides
Antigenic Specificity
Boron
Radiotherapy, Targeted
Neutrons
Cell Survival
Tumor Cells, Cultured
Isotopes

About this Paper

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.