PMID: 44215Dec 1, 1979

Stability of microtubule protein over the pH range: 6.9--9.5

Canadian Journal of Biochemistry
G Galella, D B Smith


The pH stability range of a microtubule protein preparation has been investigated between 6.9 and 9.5. Microtubule protein was exposed to various pH values in this range and then returned to pH 6.9. The appearance of microtubules as verified by electron microscopy and sedimentation analysis under polymerizing conditions was taken as an indication of a conformationally stable protein. Between pH 6.9 and pH 8.0 the loss in the ability to form microtubules was found to be reversible, at pH 8.2 it was partially reversible, above pH 8.2 it was irreversible. Tubulin and the microtubule-associated protein fraction were separately exposed to high pH. It was observed that tubulin exposed to high pH can still form microtubules in the presence of untreated microtubule-associated protein. On the other hand, microtubule-associated protein exposed to high pH could not initiate microtubule assembly with untreated tubulin. It was concluded from these observations that the loss in the ability of a microtubule protein preparation to assemble at high pH is due to a change in the microtubule-associated protein fraction and that tubulin is conformationally stable even after exposure to pH 9.5.


Apr 1, 1981·The Journal of Cell Biology·C S RegulaR D Berlin
May 16, 2012·Nanoscale·Marlene Bachand, George D Bachand

Related Concepts

Electron Microscopy
Protein Denaturation
Hydrogen-Ion Concentration

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Synapse Loss as Therapeutic Target in MS

As we age, the number of synapses present in the human brain starts to decline, but in neurodegenerative diseases this occurs at an accelerated rate. In MS, it has been shown that there is a reduction in synaptic density, which presents a potential target for treatment. Here is the latest research on synapse loss as a therapeutic target in MS.

Artificial Intelligence in Cardiac Imaging

Artificial intelligence (ai) techniques are increasingly applied to cardiovascular (cv) medicine in cardiac imaging analysis. Here is the latest research.

Position Effect Variegation

Position Effect Variagation occurs when a gene is inactivated due to its positioning near heterochromatic regions within a chromosome. Discover the latest research on Position Effect Variagation here.

Social Learning

Social learning involves learning new behaviors through observation, imitation and modeling. Follow this feed to stay up to date on the latest research.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Single Cell Chromatin Profiling

Techniques like ATAC-seq and CUT&Tag have the potential to allow single cell profiling of chromatin accessibility, histones, and TFs. This will provide novel insight into cellular heterogeneity and cell states. Discover the latest research on single cell chromatin profiling here.

Genetic Screens in iPSC-derived Brain Cells

Genetic screening is a critical tool that can be employed to define and understand gene function and interaction. This feed focuses on genetic screens conducted using induced pluripotent stem cell (iPSC)-derived brain cells.