Jan 23, 1992

Stationary and drifting spiral waves of excitation in isolated cardiac muscle

J M DavidenkoJ Jalife


Excitable media can support spiral waves rotating around an organizing centre. Spiral waves have been discovered in different types of autocatalytic chemical reactions and in biological systems. The so-called 're-entrant excitation' of myocardial cells, causing the most dangerous cardiac arrhythmias, including ventricular tachycardia and fibrillation, could be the result of spiral waves. Here we use a potentiometric dye in combination with CCD (charge-coupled device) imaging technology to demonstrate spiral waves in the heart muscle. The spirals were elongated and the rotation period, Ts, was about 180 ms (3-5 times faster than normal heart rate). In most episodes, the spiral was anchored to small arteries or bands of connective tissue, and gave rise to stationary rotations. In some cases, the core drifted away from its site of origin and dissipated at a tissue border. Drift was associated with a Doppler shift in the local excitation period, T, with T ahead of the core being about 20% shorter than T behind the core.

  • References15
  • Citations396


Mentioned in this Paper

Myocardial Contraction
Arterial System
Resting Potentials
Dall Sheep
Doppler Studies
Imaging Technology
Tachycardia, Ventricular

Related Feeds

Atrial Fibrillation

Atrial fibrillation is a common arrhythmia that is associated with substantial morbidity and mortality, particularly due to stroke and thromboembolism. Here is the latest research.


Arrhythmias are abnormalities in heart rhythms, which can be either too fast or too slow. They can result from abnormalities of the initiation of an impulse or impulse conduction or a combination of both. Here is the latest research on arrhythmias.