Mar 12, 2020

Stem Cell Aging in Skeletal Muscle Regeneration and Disease

International Journal of Molecular Sciences
Hiroyuki YamakawaShinsuke Yuasa

Abstract

Skeletal muscle comprises 30-40% of the weight of a healthy human body and is required for voluntary movements in humans. Mature skeletal muscle is formed by multinuclear cells, which are called myofibers. Formation of myofibers depends on the proliferation, differentiation, and fusion of muscle progenitor cells during development and after injury. Muscle progenitor cells are derived from muscle satellite (stem) cells (MuSCs), which reside on the surface of the myofiber but beneath the basement membrane. MuSCs play a central role in postnatal maintenance, growth, repair, and regeneration of skeletal muscle. In sedentary adult muscle, MuSCs are mitotically quiescent, but are promptly activated in response to muscle injury. Physiological and chronological aging induces MuSC aging, leading to an impaired regenerative capability. Importantly, in pathological situations, repetitive muscle injury induces early impairment of MuSCs due to stem cell aging and leads to early impairment of regeneration ability. In this review, we discuss (1) the role of MuSCs in muscle regeneration, (2) stem cell aging under physiological and pathological conditions, and (3) prospects related to clinical applications of controlling MuSCs.

  • References154
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Muscle Satellite Cell
Skeletal Muscle Structure
Cell Differentiation Process
Stem Cells
Natural Regeneration
Basement Membrane
Activation of Skeletal Muscle Regeneration
Aging
Myocytes, Cardiac
Muscle Injury

Related Feeds

Adult Stem Cells

Adult stem cells reside in unique niches that provide vital cues for their survival, self-renewal, and differentiation. They hold great promise for use in tissue repair and regeneration as a novel therapeutic strategies. Here is the latest research.

Cardiac Regeneration

Cardiac regeneration enables the repair of irreversibly damaged heart tissue using cutting-edge science, including stem cell and cell-free therapy. Discover the latest research on cardiac regeneration here.