Stem Cells in Myelodysplastic Syndromes and Acute Myeloid Leukemia: First Cousins or Unrelated Entities?

Frontiers in Oncology
Romane Joudinaud, Thomas Boyer


Myelodysplastic syndromes (MDSs) are associated with a significant risk of transformation to acute myeloid leukemia (AML), supported by alterations affecting malignant stem cells. This review focuses on the metabolic, phenotypic and genetic characteristics underlying this dynamic evolution, from myelodysplastic stem cells (MDS-SCs) to leukemic stem cells (LSCs). MDS-SCs are more likely to be derived from healthy hematopoietic stem cells (HSCs), whereas LSCs may originate from healthy progenitors, mostly LMPP (lymphoid-primed multipotential progenitors). Moreover, overexpression of CD123 and CLL1 markers by LSCs and MDS-SCs in high risk-MDS [HR-MDS] has led to exciting therapeutic applications. Single-cell sequencing has suggested that clonal evolution in the stem cell compartment was non-linear during MDS initiation and progression to AML, with pre-MDS-SC acquiring distinct additional mutations in parallel, that drive either MDS blast production or AML transformation. In AML and HR-MDS, common metabolic alterations have been identified in malignant stem cells, including activation of the protein machinery and dependence on oxidative phosphorylation. Targeting these metabolic abnormalities could prevent HR-MDS from progressing t...Continue Reading

Related Concepts

Related Feeds

Blood And Marrow Transplantation

The use of hematopoietic stem cell transplantation or blood and marrow transplantation (bmt) is on the increase worldwide. BMT is used to replace damaged or destroyed bone marrow with healthy bone marrow stem cells. Here is the latest research on bone and marrow transplantation.

Acute Myeloid Leukemia

Acute myeloid leukemia (AML) is a clinically and genetically heterogeneous disease with approximately 20,000 cases per year in the United States. AML also accounts for 15-20% of all childhood acute leukemias, while it is responsible for more than half of the leukemic deaths in these patients. Here is the latest research on this disease.

AML: Role of LSD1 by CRISPR (Keystone)

Find the latest rersearrch on the ability of CRISPR-Cas9 mutagenesis to profile the interactions between lysine-specific histone demethylase 1 (LSD1) and chemical inhibitors in the context of acute myeloid leukemia (AML) here.