May 16, 2014

Noxious effects of cell surface display glutamate sensors on plant growth and development

BioRxiv : the Preprint Server for Biology
Bret A BeheimMichael M Wudick

Abstract

Plants use electrical and chemical signals for systemic communication. Herbivory, for instance, appears to trigger local apoplasmic glutamate accumulation, systemic electrical signals and calcium waves that travel to report insect damage to neighboring leaves and initiate defense. To monitor extra- and intracellular glutamate concentrations in plants, we generated lines expressing genetically encoded fluorescent glutamate sensors. In contrast to cytosolically localized sensors, extracellularly displayed variants inhibited plant growth and proper development. Phenotypic analyses of high-affinity display sensor lines revealed that root meristem development, particularly the quiescent center (QC), the number of lateral roots, vegetative growth and flower architecture were affected. Notably, the severity of the phenotypes was proportional to the affinity of the displayed glutamate sensors, intimating that their ability to bind extracellular glutamate caused the observed defects. Congruously, root growth defects were suppressed by supplementing culture media with low levels of glutamate. Overall, our data indicate sensor noxiousness was dependent on its membrane-tethering and likely caused by sequestration of extracellular glutamate...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Patterns
Strategy
Social Learning
Disease Transmission
Racial Group
Laboratory Culture
Learning
Moving
Asians
Cognition

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.