Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms
Abstract
Biofilms are highly structured microbial communities that are enmeshed in a self-produced extracellular matrix. Within the complex oral microbiome, Streptococcus mutans is a major producer of extracellular polymeric substances including exopolysaccharides (EPS), eDNA, and lipoteichoic acid (LTA). EPS produced by S. mutans-derived exoenzymes promote local accumulation of microbes on the teeth, while forming a spatially heterogeneous and diffusion-limiting matrix that protects embedded bacteria. The EPS-rich matrix provides mechanical stability/cohesiveness and facilitates the creation of highly acidic microenvironments, which are critical for the pathogenesis of dental caries. In parallel, S. mutans also releases eDNA and LTA, which can contribute with matrix development. eDNA enhances EPS (glucan) synthesis locally, increasing the adhesion of S. mutans to saliva-coated apatitic surfaces and the assembly of highly cohesive biofilms. eDNA and other extracellular substances, acting in concert with EPS, may impact the functional properties of the matrix and the virulence of cariogenic biofilms. Enhanced understanding about the assembly principles of the matrix may lead to efficacious approaches to control biofilm-related diseases.
References
Lipoteichoic acid from Streptococcus sanguis is a natural glucosyl acceptor for glucosyltransferases
Citations
Streptococcus mutans biofilm transient viscoelastic fluid behaviour during high-velocity microsprays
Towards standardized mechanical characterization of microbial biofilms: analysis and critical review
Related Concepts
Related Feeds
Biofilm & Infectious Disease
Biofilm formation is a key virulence factor for a wide range of microorganisms that cause chronic infections.Here is the latest research on biofilm and infectious diseases.
Biofilms
Biofilms are adherent bacterial communities embedded in a polymer matrix and can cause persistent human infections that are highly resistant to antibiotics. Discover the latest research on Biofilms here.