Structural basis of hypoxic gene regulation by the Rv0081 transcription factor of Mycobacterium tuberculosis

BioRxiv : the Preprint Server for Biology
Ashwani KumarShekhar C Mande

Abstract

The transcription factor Rv0081 of M. tuberculosis controls the hypoxic gene expression and acts as a regulatory hub in the latent phase of tuberculosis infection. We report here the crystal structure of Rv0081 at 3.3 Å resolution revealing that it belongs to the well-known ArsR/SmtB family proteins. ArsR/SmtB family transcriptional repressors exert gene regulation by reversible metal binding. Hypoxia in general is sensed by bacterial transcriptional regulators via metals or Cys-mediated thiol switches. Oxygen sensing typically leads to transcriptional repressor changing its conformational state with altered DNA-binding property under different oxygen levels. Surprisingly Rv0081 neither has a metal binding domain nor does it possess Cys residues suggesting an alternate mechanism of gene regulation. Our structural analysis identified Ser 48, Ser 49, Ser 52 and Gln 53 as potential residues of Rv0081 involved in DNA binding. We probed DNA-binding of Rv0081 with electrophoretic mobility shift assay (EMSA) as well as surface plasmon resonance (SPR), where the Alanine mutants of these residues showed diminished DNA binding. Similarly, Aspartate mutants of these Ser residues was shown to fail to bind to DNA. Since, phosphorylation of ...Continue Reading

Related Concepts

Cysteine
DNA
Gene Expression
Glutamine
Magnetic Resonance Imaging
Metals
Mycobacterium tuberculosis
Oxygen
Phosphorylation
Serine

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.