Structural insights into the cross-neutralization of SARS-CoV and SARS-CoV-2 by the human monoclonal antibody 47D11.

Science Advances
Juliette FedryBerend-Jan Bosch

Abstract

The emergence of SARS-CoV-2 antibody escape mutations highlights the urgent need for broadly neutralizing therapeutics. We previously identified a human monoclonal antibody, 47D11, capable of cross-neutralizing SARS-CoV-2 and SARS-CoV and protecting against the associated respiratory disease in an animal model. Here, we report cryo-EM structures of both trimeric spike ectodomains in complex with the 47D11 Fab. 47D11 binds to the closed receptor-binding domain, distal to the ACE2 binding site. The CDRL3 stabilizes the N343 glycan in an upright conformation, exposing a mutationally constrained hydrophobic pocket, into which the CDRH3 loop inserts two aromatic residues. 47D11 stabilizes a partially open conformation of the SARS-CoV-2 spike, suggesting that it could be used effectively in combination with other antibodies targeting the exposed receptor-binding motif. Together, these results reveal a cross-protective epitope on the SARS-CoV-2 spike and provide a structural roadmap for the development of 47D11 as a prophylactic or postexposure therapy for COVID-19.

References

Apr 12, 2003·The New England Journal of Medicine·Thomas G KsiazekUNKNOWN SARS Working Group
Dec 13, 2003·The Journal of Biological Chemistry·Swee Kee WongMichael Farzan
Jul 21, 2004·Journal of Computational Chemistry·Eric F PettersenThomas E Ferrin
Dec 2, 2004·Acta Crystallographica. Section D, Biological Crystallography·Paul Emsley, Kevin Cowtan
Aug 8, 2007·Journal of Molecular Biology·Evgeny Krissinel, Kim Henrick
Feb 17, 2009·Expert Opinion on Biological Therapy·Ponraj PrabakaranDimiter S Dimitrov
Jan 9, 2010·Acta Crystallographica. Section D, Biological Crystallography·Vincent B ChenDavid C Richardson
Apr 5, 2011·Acta Crystallographica. Section D, Biological Crystallography·Gábor Bunkóczi, Randy J Read
Apr 17, 2012·Acta Crystallographica. Section D, Biological Crystallography·Jeffrey J HeaddPaul D Adams
Apr 23, 2014·Nucleic Acids Research·Xavier Robert, Patrice Gouet
Apr 18, 2015·Nature Chemical Biology·Jon AgirreKevin Cowtan
Aug 19, 2015·Journal of Structural Biology·Alexis Rohou, Nikolaus Grigorieff
Nov 20, 2015·Nature Structural & Molecular Biology·Jon AgirreKevin D Cowtan
Sep 1, 2016·Annual Review of Virology·Fang Li
Jul 16, 2017·Protein Science : a Publication of the Protein Society·Thomas D GoddardThomas E Ferrin
Oct 27, 2017·Proceedings of the National Academy of Sciences of the United States of America·Alexandra C WallsDavid Veesler
Nov 25, 2017·Nature Communications·Alan H M WongJames M Rini
Jun 4, 2018·Nucleic Acids Research·Wei TianJie Liang
Jun 7, 2018·Acta Crystallographica. Section D, Structural Biology·Tristan Ian Croll
Oct 20, 2018·Nature Immunology·Erica Ollmann SaphireGalit Alter
Apr 13, 2019·Nucleic Acids Research·Fábio MadeiraRodrigo Lopez
May 16, 2019·Nature Methods·Martin SchorbDavid N Mastronarde
Feb 23, 2020·Science·Daniel WrappJason S McLellan
Mar 4, 2020·Nature Microbiology·UNKNOWN Coronaviridae Study Group of the International Committee on Taxonomy of Viruses
Mar 11, 2020·Cell·Alexandra C WallsDavid Veesler
Mar 14, 2020·The Journal of Clinical Investigation·Arturo Casadevall, Liise-Anne Pirofski
Mar 18, 2020·Critical Care : the Official Journal of the Critical Care Forum·Anne Catherine CunninghamDavid Koh
May 6, 2020·Nature Communications·Chunyan WangBerend-Jan Bosch

❮ Previous
Next ❯

Citations

Aug 31, 2021·Clinical Immunology : the Official Journal of the Clinical Immunology Society·Sourbh Suren GargJeena Gupta

❮ Previous
Next ❯

Software Mentioned

UCSF ChimeraX
Phenix Real Space Refinement
CASTp
MotionCor2
EPU
Relion
UCSF Chimera
UCSF Chimera “ Fit in map
MolProbity
CTFFind4

Related Concepts

Related Feeds