Nov 9, 2019

Structure-Activity Relationship Study of Acyclic Terpenes in Blood Glucose Levels: Potential α-Glucosidase and Sodium Glucose Cotransporter (SGLT-1) Inhibitors

Molecules : a Journal of Synthetic Chemistry and Natural Product Chemistry
Miguel ValdesJessica Mendieta-Wejebe

Abstract

Twelve terpenoids were evaluated in the treatment of type 2 diabetes mellitus: seven monoterpenes (geranyl acetate (1), geranic acid (2), citral (3), geraniol (4), methyl geranate (5), nerol (6), and citronellic acid (7)), three sesquiterpenes (farnesal (8), farnesol (9), and farnesyl acetate (10)), one diterpene (geranylgeraniol (11)), and one triterpene (squalene (12)) were selected to carry out a study on normoglycemic and streptozotocin-induced diabetic mice. Among these, 2, 3, 7, 8, 9, and 10 showed antihyperglycemic activity in streptozotocin-induced diabetic mice. They were then selected for evaluation in oral sucrose and lactose tolerance tests (OSTT and OLTT) as well as in an oral glucose tolerance test (OGTT). In the OSTT and OLTT, compounds 3, 7, 8, 9, and 10 showed a reduction in postprandial glucose peaks 2 h after a sucrose or lactose load (comparable to acarbose). In the case of the OGTT, 2, 7, 8, 9, and 10 showed a reduction in postprandial glucose peaks 2 h after a glucose load (comparable to canagliflozin). Our results suggest that the control of postprandial hyperglycemia may be mediated by the inhibition of disaccharide digestion, such as sucrose and lactose, and the regulation of the absorption of glucose. ...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Sodium-Glucose Transport Proteins
Diabetes Mellitus, Non-Insulin-Dependent
Study
Oral Glucose Tolerance Test
Diterpenes
Disaccharide Metabolic Process
Terpenes
Regulation of Biological Process
Inhibitors
Acarbose

Related Feeds

Autoimmune Diabetes & Tolerance

Patients with type I diabetes lack insulin-producing beta cells due to the loss of immunological tolerance and autoimmune disease. Discover the latest research on targeting tolerance to prevent diabetes.