Dec 1, 1973

Studies on the Energy-coupling Sites of Photophosphorylation: II. Treatment of Chloroplasts with NH(2)OH Plus Ethylenediaminetetraacetate to Inhibit Water Oxidation while Maintaining Energy-coupling Efficiencies

Plant Physiology
D R Ort, S Izawa


Artificial electron donors to photosystem II provide an important means for characterizing the newly discovered site of energy coupling near photosystem II. However, water oxidation must be completely abolished, without harming the phosphorylation mechanism, for these donor reactions and the associated phosphorylation to withstand rigorous quantitative analysis. In this paper we have demonstrated that treatment of chloroplasts with hydroxylamine plus EDTA at pH 7.5 in the presence of Mg(2+) followed by washing to remove the amine is a highly reliable technique for this purpose. The decline of the Hill reaction and the coupled phosphorylation during the treatment were carefully followed. No change in the efficiency of phosphorylation (P/e(2) 1.0-1.1) was observed until the reactions became immeasurable. Photosystem I-dependent reactions, such as the transfer of electrons from diaminodurene or reduced 2,6-dichlorophenolindophenol to methylviologen, and the associated phosphorylation were totally unaffected. It is clear that the hydroxylamine treatment is highly specific, with no adverse effect on the mechanism of phosphorylation itself. Benzidine photooxidation via both photosystems II and I in hydroxylamine-treated chloroplasts ...Continue Reading

Mentioned in this Paper

Protein Phosphorylation

About this Paper

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.