Subcortical theta oscillations alternate with high amplitude neocortical population within synchronized states

BioRxiv : the Preprint Server for Biology
Erin Munro KrullShuzo Sakata


Synchronized states are marked by large-amplitude low-frequency oscillations in the cortex. These states can be seen during quiet waking or slow-wave sleep. Within synchronized states, previous studies have noted a plethora of different types of activity, including delta oscillations (0.5-4 Hz) and slow oscillations (<1 Hz) in the cortex and large- and small- irregular activity in the hippocampus. However, it is not still fully characterized how neural populations contribute to the synchronized state. Here we apply independent component analysis (ICA) to parse which populations are involved in different kinds of cortical activity, and find two populations that alternate throughout synchronized states. One population broadly affects cortical deep layers, and is associated with larger amplitude slower cortical activity. The other population exhibits theta-frequency oscillations that are not easily observed in raw field potential recordings. These theta oscillations apparently come from below the cortex, suggesting hippocampal origin, and are associated with smaller amplitude faster cortical activity. Relative involvement of these two alternating populations may indicate different modes of operation within synchronized states.

Related Concepts

Cerebral Cortex
Hippocampus (Brain)
Theta Rhythm
Brain Waves
Population Group

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.