Apr 27, 2016

Subiculum neurons map the current axis of travel

BioRxiv : the Preprint Server for Biology
Jacob M OlsonDouglas M Nitz

Abstract

Travel constrained to paths, a common navigational context, demands knowledge of spatial relationships between routes, their components, and their positioning in the larger environment. During traversal of an environment composed of multiple interconnected paths, a subpopulation of subiculum neurons robustly encoded the animal's current axis of travel. The firing of these axis-tuned neurons peaked bimodally at head orientations approximately 180 degrees apart. Track rotation experiments revealed that axis encoding carried the spatial reference frame of the larger environment as opposed to the track itself. However, axis-tuned activity of the same subpopulation was largely absent during unconstrained movement about a circular arena. Thus, during navigation in a path-rich environment, subpopulations of subiculum neurons encode the animal's current axis of travel relative to environmental boundaries - providing a powerful mechanism for mapping of specific relationships between routes, route components, and the larger environment.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Neurons
Spatial Distribution
Environment
Tracking
Circular Nucleus
Patient Navigation
Structure of Subiculum Hippocampi
Orientation (spatial)
Research Study

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.