Mar 1, 1976

Sulfate-reducing pathway in Escherichia coli involving bound intermediates

Journal of Bacteriology
M L Tsang, J A Schiff


Although a sulfate-reducing pathway in Escherichia coli involving free sulfite and sulfide has been suggested, it is shown that, as in Chlorella, a pathway involving bound intermediates is also present. E. coli extracts contained a sulfotransferase that transferred the sulfonyl group from a nucleosidephosphosulfate to an acceptor to form an organic thiosulfate. This enzyme was specific for adenosine 3'-phosphate 5'-phosphosulfate, did not utilize adenine 5'-phosphosulfate, and transferred to a carrier molecule that was identical with thioredoxin in molecular weight and amino acid composition. In the absence of thioredoxin, only very low levels of the transfer of the sulfo group to thiols was observed. As in Chlorella, thiosulfonate reductase activity that reduced glutathione-S-SO3- to bound sulfide could be detected. In E. coli, this enzyme used reduced nicotinamide adenine dinucleotide phosphate and Mg2+, but did not require the addition of ferredoxin or ferredoxin nicotinamide adenine dinucleotide phosphate reductase. Although in Chlorella the thiosulfonate reductase appears to be a different enzyme from the sulfite reductase, the E. coli thiosulfonate reductase and sulfite reductase may be activities of the same enzyme.

  • References
  • Citations22


  • We're still populating references for this paper, please check back later.
  • References
  • Citations22

Mentioned in this Paper

Sulfite reductase
Biochemical Pathway
Sulfates, Inorganic
Alkalescens-Dispar Group
Phosphoric Monoester Hydrolases
Adenosine 3'-Phosphate

About this Paper

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.