Dec 1, 1985

SUM1, an apparent positive regulator of the cryptic mating-type loci in Saccharomyces cerevisiae

A J KlarL M Miglio


The mating-type information residing at the HML and HMR loci in Saccharomyces cerevisiae is kept unexpressed by the action of at least four MAR (or SIR) loci. To determine possible interactions between the MAR/SIR gene products and to find new regulatory loci, we sought extragenic suppressors of the mar1-1 mutation. A strain with the genotype HMLa MAT alpha HMRa mar1-1 is unable to mate because of the simultaneous expression of a and alpha information. A mutant of this strain was isolated that exhibits an alpha phenotype and, therefore, presumably fails to express the HML and HMR loci. We designate the new locus SUM1 (suppressor of mar). The mutation is recessive, centromere unlinked and does not correspond to the MAT, HML, HMR, SIR1, MAR1, MAR2 (SIR3) or SIR4 loci. The sum1 mutation affects expression of both a and alpha information at the HM loci. Suppression by sum1-1 is neither allele specific nor locus specific as it suppresses a deletion mutation of the MAR1 locus and mutations in SIR3 and SIR4. The sum1-1 mutation has no discernible phenotype in a Mar+ strain. We propose that the MAR/SIR gene products negatively regulate the SUM1 locus, the gene product of which is necessary for expression of the HM loci.

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

CFC1 gene
Mating Type, Fungal
Saccharomyces cerevisiae allergenic extract
PEG10 gene
Suppressor Mutation
Visual Suppression
Genes, Regulator
Genes, Fungal

About this Paper

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Coronavirus Protein Structures

Deciphering and comparing the proteins of different coronaviruses forms a basis for understanding SARS-CoV-2 evolution and virus-receptor interactions. This feed follows studies analyzing the structures of coronavirus proteins, thereby revealing potential drug target sites.

DDX3X Syndrome

DDX3X syndrome is caused by a spontaneous mutation at conception that primarily affects girls due to its location on the X-chromosome. DDX3X syndrome has been linked to intellectual disabilities, seizures, autism, low muscle tone, brain abnormalities, and slower physical developments. Here is the latest research.

ALS: Stress Granules

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by cytoplasmic protein aggregates within motor neurons. TDP-43 is an ALS-linked protein that is known to regulate splicing and storage of specific mRNAs into stress granules, which have been implicated in formation of ALS protein aggregates. Here is the latest research.

Fusion Oncoproteins in Childhood Cancers

This feed explores the function of fusion oncoproteins in specific childhood cancers, including those from racial/ethnic minority and underserved groups, and to provide preclinical assessment of potential therapeutics and how fusion oncoproteins influence gene expression to perturb normal cellular programs to block lineage differentiation and development

Applications of Molecular Barcoding

The concept of molecular barcoding is that each original DNA or RNA molecule is attached to a unique sequence barcode. Sequence reads having different barcodes represent different original molecules, while sequence reads having the same barcode are results of PCR duplication from one original molecule. Discover the latest research on molecular barcoding here.

Regulation of Vocal-Motor Plasticity

Dopaminergic projections to the basal ganglia and nucleus accumbens shape the learning and plasticity of motivated behaviors across species including the regulation of vocal-motor plasticity and performance in songbirds. Discover the latest research on the regulation of vocal-motor plasticity here.

Mitotic-exit networks with cytokinesis

Cytokinesis is the highly regulated process that physically separates daughter and mother cells in late mitosis. The mitotic-exit network (MEN), the signalling pathway that drives mitotic exit, directly regulates cytokinesis. Discover the latest research on mitotic-exit networks with cytokinesis here.

DNA Replication Origin

DNA replication is initiated as specific gene sequences, called origins, that function to start DNA replication. Pre-replication complexes are assembled at these origins during the G1 phase of the cell cycle. These sequences allow for targeted activation or deactivation of replication. Discover the latest research on DNA replication origins here.