DOI: 10.1101/495382Dec 13, 2018Paper

Super-resolution modularity analysis shows polyhedral caveolin-1 oligomers combine to form scaffolds and caveolae

BioRxiv : the Preprint Server for Biology
Ismail M. KhaterIvan Robert Nabi


Caveolin-1 (Cav1), the coat protein for caveolae, also forms non-caveolar Cav1 scaffolds. Single molecule Cav1 super-resolution microscopy analysis previously identified caveolae and three distinct scaffold domains: smaller S1A and S2B scaffolds and larger hemispherical S2 scaffolds. Application here of network modularity analysis of SMLM data for endogenous Cav1 labeling in HeLa cells shows that small scaffolds combine to form larger scaffolds and caveolae. We find modules within Cav1 blobs by maximizing the intra-connectivity between Cav1 molecules within a module and minimizing the inter-connectivity between Cav1 molecules across modules, which is achieved via spectral decomposition of the localizations adjacency matrix. Features of modules are then matched with intact blobs to find the similarity between the module-blob pairs of group centers. Our results show that smaller S1A and S1B scaffolds are made up of small polygons, that S1B scaffolds correspond to S1A scaffold dimers and that caveolae and hemi-spherical S2 scaffolds are complex, modular structures formed from S1B and S1A scaffolds, respectively. Polyhedral interactions of Cav1 oligomers therefore leads progressively to the formation of larger and more complex scaf...Continue Reading

Related Concepts

Extracellular Matrix
HeLa Cells
Health Center
Tissue Scaffolds
Aureobasidin S2b

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Caveolins & Signal Transduction

Caveolins are small proteins with a hairpin loop conformation that are located in the plasma membrane of various cell types where they bind cholesterol and interact with receptors essential for several signal transduction pathways. Here is the latest research.