Oct 28, 2019

Suppression of Zika Virus Infection in the Brain by the Antiretroviral Drug Rilpivirine

Molecular Therapy : the Journal of the American Society of Gene Therapy
Ilker Kudret SariyerKamel Khalili

Abstract

Zika virus (ZIKV) infection is associated with microcephaly in neonates and Guillain-Barré syndrome in adults. ZIKV produces a class of nonstructural (NS) regulatory proteins that play a critical role in viral transcription and replication, including NS5, which possesses RNA-dependent RNA polymerase (RdRp) activity. Here we demonstrate that rilpivirine (RPV), a non-nucleoside reverse transcriptase inhibitor (NNRTI) used in the treatment of HIV-1 infection, inhibits the enzymatic activity of NS5 and suppresses ZIKV infection and replication in primary human astrocytes. Similarly, other members of the NNRTI family, including etravirine and efavirenz, showed inhibitory effects on viral infection of brain cells. Site-directed mutagenesis identified 14 amino acid residues within the NS5 RdRp domain (AA265-903), which are important for the RPV interaction and the inhibition of NS5 polymerase activity. Administration of RPV to ZIKV-infected interferon-alpha/beta receptor (IFN-A/R) knockout mice improved the clinical outcome and prevented ZIKV-induced mortality. Histopathological examination of the brains from infected animals revealed that RPV reduced ZIKV RNA levels in the hippocampus, frontal cortex, thalamus, and cerebellum. Repurp...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Polymerase
Virus Diseases
Astrocytes
SC 903
Interferon alpha-beta receptor
Etravirine
Prophylactic Treatment
Efavirenz
Enzymatic Activity [MoA]
Brain Cell

Related Feeds

CRISPR (general)

Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). CRISPR-Cas system enables the editing of genes to create or correct mutations. Discover the latest research on CRISPR here.

Astrocytes

Astrocytes are glial cells that support the blood-brain barrier, facilitate neurotransmission, provide nutrients to neurons, and help repair damaged nervous tissues. Here is the latest research.