Synthesis of 4-[2-aminoethyl(nitrosamino)]-1-pyridin-3-yl-butan-1-one, a new NNK hapten for the induction of N-nitrosamine-specific antibodies

Bioconjugate Chemistry
Emmanuel J F ProdhommeClaude P Muller

Abstract

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is one of the most abundant and potent procarcinogens in tobacco smoke. In order to induce a strong and substained antibody response against NNK, we developed a functionalized derivative that closely mimicked its structural features, in particular, the pyridyloxobutyl moiety, the adjacent ketone, and the N-nitrosamino group. This hapten was conjugated via a C 2 linker to the highly immunogenic diphteria toxoid licensed as a vaccine in humans to induce polyclonal and monoclonal antibodies. Two monoclonal antibodies were obtained with Kd values of 45.8 nM (P9D5) and 37.6 nM (P7H3), respectively, for NNK-C 2. Both the monoclonal (P9D5 and P7H3) and polyclonal antibodies reacted strongly with NNK (IC 50 = 80 microM or 160 microM) and NNAL (IC 50 = 29 microM or 93 microM) and to a lesser extent with some of the metabolites of NNK. Interestingly, the mAbs did not react with the metabolites of the detoxification pathways such as NNK-N-Oxide and NNAL-N-Oxide (IC 50 > 512 microM). Therefore, such antibodies detect NNK and NNAL and may have the potential to modulate their redistribution in vivo, perhaps reducing some detrimental effects of smoking.

Citations

Oct 28, 2008·Journal of Molecular Recognition : JMR·Rebecca L Rich, David G Myszka
Feb 16, 2019·Organic & Biomolecular Chemistry·Jared L FreemanDaniel P Furkert

Related Concepts

4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone
4-(2-aminoethyl(nitrosamino))-1-pyridin-3-yl-butan-1-one
Carrier Proteins
Haptens
Nitrosamines

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Evolution of Pluripotency

Pluripotency refers to the ability of a cell to develop into three primary germ cell layers of the embryo. This feed focuses on the mechanisms that underlie the evolution of pluripotency. Here is the latest research.

Lipidomics & Rhinovirus Infection

Lipidomics can be used to examine the lipid species involved with pathogenic conditions, such as viral associated inflammation. Discovered the latest research on Lipidomics & Rhinovirus Infection.

Alzheimer's Disease: MS4A

Variants within the membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease in genome-wide association studies. Here is the latest research on Alzheimer's disease and MS4A.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Torsion Dystonia

Torsion dystonia is a movement disorder characterized by loss of control of voluntary movements appearing as sustained muscle contractions and/or abnormal postures. Here is the latest research.

Generating Insulin-Secreting Cells

Reprogramming cells or using induced pluripotent stem cells to generate insulin-secreting cells has significant therapeutic implications for diabetics. Here is the latest research on generation of insulin-secreting cells.

Central Pontine Myelinolysis

Central Pontine Myelinolysis is a neurologic disorder caused most frequently by rapid correction of hyponatremia and is characterized by demyelination that affects the central portion of the base of the pons. Here is the latest research on this disease.

Epigenome Editing

Epigenome editing is the directed modification of epigenetic marks on chromatin at specified loci. This tool has many applications in research as well as in the clinic. Find the latest research on epigenome editing here.