Apr 21, 2020

Quantitative mapping of transcriptome and proteome dynamics during polarization of human iPSC-derived neurons

BioRxiv : the Preprint Server for Biology
F. W. LindhoutCasper C. Hoogenraad

Abstract

Early neuronal development is a well-coordinated process in which neuronal stem cells differentiate into polarized neurons. This process has been well studied in classical non-human model systems, but to what extent this is recapitulated in human neurons remains unclear. To study neuronal polarization in human neurons, we cultured human iPSC-derived neurons, characterized early developmental stages, measured electrophysiological responses, and systematically profiled transcriptomic and proteomic dynamics during these steps. We found extensive remodeling of the neuron transcriptome and proteome, with altered mRNA expression of ~1,100 genes and different expression profiles of ~1,500 proteins during neuronal differentiation and polarization. We also identified a distinct stage in axon development marked by an increase in microtubule remodeling and apparent relocation of the axon initial segment from the distal to proximal axon. Our comprehensive characterization and quantitative map of transcriptome and proteome dynamics provides a solid framework for studying polarization in human neurons.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Vertebrates
Conserved Synteny
Fluorescent in Situ Hybridization
Positioning Attribute
Exons
Genome
Genes
Interphase
Extracellular Matrix
X-Ray Computed Tomography

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.