TAK-071, a muscarinic M1 receptor positive allosteric modulator, attenuates scopolamine-induced quantitative electroencephalogram power spectral changes in cynomolgus monkeys

BioRxiv : the Preprint Server for Biology
Emi KurimotoMotohisa Suzuki


Activation of the muscarinic M1 receptor is a promising approach to improve cognitive deficits associated with cholinergic dysfunction in Alzheimer’s disease, dementia with Lewy bodies, and schizophrenia. TAK-071 is an M1-selective positive allosteric modulator that improves cognitive deficits induced by scopolamine, a non-selective muscarinic receptor antagonist, with reduced side effects on gastrointestinal function in rats. In this study, we explored changes in quantitative electroencephalography (qEEG) power bands, with or without scopolamine challenge, as a non-invasive translational biomarker for the effect of TAK-071 in cynomolgus monkeys. Scopolamine has been reported to increase theta and delta power bands and decrease alpha power band in healthy volunteers. In line with the clinical observations, scopolamine (25?100 μg/kg, subcutaneous administration [s.c.]) increased theta and delta power bands in cynomolgus monkeys in a dose-dependent manner, whereas it had the opposite effect on alpha power band. The effects of TAK-071 on scopolamine (25 μg/kg, s.c.)-induced qEEG spectral changes were examined using an acetylcholinesterase inhibitor donepezil and a muscarinic M1/M4 receptor agonist xanomeline as comparative cholino...Continue Reading

Related Concepts

Acetylcholinesterase Inhibitors
Alzheimer's Disease
Biological Markers
Clinical Research
Macaca fascicularis
Muscarinic Acetylcholine Receptor
Theta Rhythm

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Alzheimer's Disease: Microglia (Preprints)

Microglial proliferation and activation, as well as its concentration around amyloid plaques, is a prominent feature of Alzheimer’s disease. Here is the latest research on microglia and Alzheimer’s disease.