DOI: 10.1101/514927Jan 9, 2019Paper

Tau-mediated Disruption of the Spliceosome Triggers Cryptic RNA-splicing and Neurodegeneration in Alzheimer's Disease

BioRxiv : the Preprint Server for Biology
Yi-Chen HsiehJoshua M Shulman

Abstract

In Alzheimer's disease (AD), spliceosomal proteins with critical roles in RNA processing aberrantly aggregate and mislocalize to Tau neurofibrillary tangles. We test the hypothesis that Tau-spliceosome interactions disrupt pre-mRNA splicing in AD. In human postmortem brain with AD pathology, Tau coimmunoprecipitates with spliceosomal core components. In Drosophila models, pan-neuronal Tau expression triggers reductions in core and U1-specific spliceosomal proteins, and genetic disruption of these factors, including SmB, U1-70K, and U1A, enhances Tau-mediated neurodegeneration. We further show that loss-of-function in SmB, encoding a core spliceosomal protein, causes decreased survival, progressive locomotor impairment, and neuronal loss, independent of Tau toxicity. Lastly, RNA-sequencing reveals a similar profile of mRNA splicing errors in SmB mutant and Tau transgenic flies, including intron retention and non-annotated cryptic splice junctions. In human brains, we confirm cryptic splicing errors in association with neurofibrillary tangle pathologic burden. Our results implicate spliceosome disruption and perturbations of the neuronal transcriptome in Tau-mediated neurodegeneration in AD.

Related Concepts

Alzheimer's Disease
Brain
Locomotion
Nerve Degeneration
Neurons
Pathology
RNA
RNA Splicing
Plants, Transgenic
Neurofibrillary Degeneration (Morphologic Abnormality)

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Alzheimer's Disease: Transcription

Impaired transcription is associated with the pathogenesis and progression of conditions such as Alzheimer's disease (AD). Here are the latest discoveries pertaining to transcription and AD.

Alzheimer's Disease: RNA Sequencing

RNA sequencing studies have shed light on the genetic and molecular mechanisms related to the pathophysiology of Alzheimer's disease (AD). This feed follows papers using RNA sequencing technologies in Alzheimer's research.

Alzheimer's Disease: Tau & TDP-43

Alzheimer's disease is a neurodegenerative disease. This feed focuses on the underlying role of tau proteins and TAR DNA-binding protein 43, as well as other genetic factors, in Alzheimer's disease.

Alzheimer's Disease: Microglia (Preprints)

Microglial proliferation and activation, as well as its concentration around amyloid plaques, is a prominent feature of Alzheimer’s disease. Here is the latest research on microglia and Alzheimer’s disease.

Alternative splicing

Alternative splicing a regulated gene expression process that allows a single genetic sequence to code for multiple proteins. Here is that latest research.