DOI: 10.1101/507160Dec 27, 2018Paper

Temporal modulation of host aerobic glycolysis determines the outcome of M. marinum infection

BioRxiv : the Preprint Server for Biology
Lu MengChen Niu

Abstract

Macrophages are the first-line host defense where the invading Mycobacterium tuberculosis (Mtb) encounters. It has been recently reported that host aerobic glycolysis was elevated post the infection by a couple of virulent mycobacterial species. However, whether this metabolic transition is required for host defense against intracellular pathogens and the underlying mechanisms remain to be further investigated. By analyzing carbon metabolism, we found that macrophages infected by M. marinum, a surrogate mycobacterial specie to Mtb, showed a strong elevation of glycolysis. Next, three glycolysis inhibitors were examined for their ability to inhibit mycobacterial proliferation inside RAW264.7, a murine macrophage-like cell line. Among them, a glucose analog, 2-deoxyglucose (2-DG) displayed a protective effect on assisting host to resist mycobacterial infection, which was further validated in zebrafish-infection model. The phagocytosis of M. marinum was significantly decreased in macrophages pre-treated with 2-DG at concentrations of 0.5 and 1 mM, at which no inhibitory effect was posed on M. marinum growth in vitro. Moreover, 2-DG pre-treatment exerted a significant protective effect on zebrafish larvae to limit the proliferation...Continue Reading

Related Concepts

Carbon
Glycolysis
Larva
Macrophage
Metabolism
Genus Mycobacterium
Mycobacterium Infections
Mycobacterium tuberculosis
Phagocytosis
Zebrafish

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.