Dec 1, 1994

Termination-altering amino acid substitutions in the beta' subunit of Escherichia coli RNA polymerase identify regions involved in RNA chain elongation

Genes & Development
R WeilbaecherRobert Landick

Abstract

To identify regions of the largest subunit of RNA polymerase that are potentially involved in transcript elongation and termination, we have characterized amino acid substitutions in the beta' subunit of Escherichia coli RNA polymerase that alter expression of reporter genes preceded by terminators in vivo. Termination-altering substitutions occurred in discrete segments of beta', designated 2, 3a, 3b, 4a, 4b, 4c, and 5, many of which are highly conserved in eukaryotic homologs of beta'. Region 2 substitutions (residues 311-386) are tightly clustered around a short sequence that is similar to a portion of the DNA-binding cleft in E. coli DNA polymerase I. Region 3b (residues 718-798) corresponds to the segment of the largest subunit of RNA polymerase II in which amanitin-resistance substitutions occur. Region 4a substitutions (residues 933-936) occur in a segment thought to contact the transcript 3' end. Region 5 substitutions (residues 1308-1356) are tightly clustered in conserved region H near the carboxyl terminus of beta'. A representative set of mutant RNA polymerases were purified and revealed unexpected variation in percent termination at six different rho-independent terminators. Based on the location and properties of ...Continue Reading

  • References
  • Citations55

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations55

Citations

Mentioned in this Paper

Conserved Sequence
Alkalescens-Dispar Group
Transcription, Genetic
Mutagenesis, Site-Directed
Homologous Sequences, Amino Acid
Transcriptase
Hydroxylamines
Haploid Cell
Hydroxylammonium Chloride
Saccharomyces cerevisiae

About this Paper

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Coronavirus Protein Structures

Deciphering and comparing the proteins of different coronaviruses forms a basis for understanding SARS-CoV-2 evolution and virus-receptor interactions. This feed follows studies analyzing the structures of coronavirus proteins, thereby revealing potential drug target sites.

DDX3X Syndrome

DDX3X syndrome is caused by a spontaneous mutation at conception that primarily affects girls due to its location on the X-chromosome. DDX3X syndrome has been linked to intellectual disabilities, seizures, autism, low muscle tone, brain abnormalities, and slower physical developments. Here is the latest research.

ALS: Stress Granules

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by cytoplasmic protein aggregates within motor neurons. TDP-43 is an ALS-linked protein that is known to regulate splicing and storage of specific mRNAs into stress granules, which have been implicated in formation of ALS protein aggregates. Here is the latest research.

Fusion Oncoproteins in Childhood Cancers

This feed explores the function of fusion oncoproteins in specific childhood cancers, including those from racial/ethnic minority and underserved groups, and to provide preclinical assessment of potential therapeutics and how fusion oncoproteins influence gene expression to perturb normal cellular programs to block lineage differentiation and development

Applications of Molecular Barcoding

The concept of molecular barcoding is that each original DNA or RNA molecule is attached to a unique sequence barcode. Sequence reads having different barcodes represent different original molecules, while sequence reads having the same barcode are results of PCR duplication from one original molecule. Discover the latest research on molecular barcoding here.

Regulation of Vocal-Motor Plasticity

Dopaminergic projections to the basal ganglia and nucleus accumbens shape the learning and plasticity of motivated behaviors across species including the regulation of vocal-motor plasticity and performance in songbirds. Discover the latest research on the regulation of vocal-motor plasticity here.

Mitotic-exit networks with cytokinesis

Cytokinesis is the highly regulated process that physically separates daughter and mother cells in late mitosis. The mitotic-exit network (MEN), the signalling pathway that drives mitotic exit, directly regulates cytokinesis. Discover the latest research on mitotic-exit networks with cytokinesis here.

DNA Replication Origin

DNA replication is initiated as specific gene sequences, called origins, that function to start DNA replication. Pre-replication complexes are assembled at these origins during the G1 phase of the cell cycle. These sequences allow for targeted activation or deactivation of replication. Discover the latest research on DNA replication origins here.