Tethered homing gene drives: a new design for spatially restricted population replacement and suppression

BioRxiv : the Preprint Server for Biology
Sumit DholeFred Gould

Abstract

Optimism regarding potential epidemiological and conservation applications of modern gene drives is tempered by concern about the potential unintended spread of engineered organisms beyond the target population. In response, several novel gene drive approaches have been proposed that can, under certain conditions, locally alter characteristics of a population. One challenge for these gene drives is the difficulty of achieving high levels of localized population suppression without very large releases in face of gene flow. We present a new gene drive system, Tethered Homing (TH), with improved capacity for localized population alteration, especially for population suppression. The TH drive is based on driving a payload gene using a homing construct that is anchored to a spatially restricted gene drive. We use a proof of principle mathematical model to show the dynamics of a TH drive that uses engineered underdominance as an anchor. This system is composed of a split homing drive and a two-locus engineered underdominance drive linked to one part of the split drive (the Cas endonuclease). In addition to improved localization, the TH system offers the ability to gradually adjust the genetic load in a population after the initial al...Continue Reading

Related Concepts

Face
Genes
Genetic Engineering
Target Population
Calcium magnesium dependent endodeoxyribonuclease
Local
Approach
Population Group
5-(((6-((carbazol-9-yl)acetamido)hexyl)aminocarbonyl)vinyl)deoxyuridine
Gene Flow

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.