Apr 3, 2012

The active stem cell specific expression of sponge Musashi homolog EflMsiA suggests its involvement in maintaining the stem cell state

Mechanisms of Development
Kazuko OkamotoNoriko Funayama


A hallmark of stem cells is the ability to sustainably generate stem cells themselves (self-renew) as well as differentiated cells. Although a full understanding of this ability will require clarifying underlying the primordial molecular and cellular mechanisms, how stem cells maintain their stem state and their population in the evolutionarily oldest extant multicellular organisms, sponges, is poorly understood. Here, we report the identification of the first stem cell-specific gene in demosponges, a homolog of Musashi (an evolutionarily conserved RNA binding protein that regulates the stem cell state in various organisms). EflMsiA, a Musashi paralog, is specifically expressed in stem cells (archeocytes) in the freshwater sponge Ephydatia fluviatilis. EflMsiA protein is localized predominantly in the nucleus, with a small fraction in the cytoplasm, in archeocytes. When archeocytes enter M-phase, EflMsiA protein diffuses into the cytoplasm, probably because of the breakdown of the nuclear membrane. In the present study, the existence of two types of M-phase archeocytes [(M)-archeocytes] was revealed by a precise analysis of the expression levels of EflMsiA mRNA and protein. In Type I (M)-archeocytes, presumably archeocytes unde...Continue Reading

Mentioned in this Paper

Establishment and Maintenance of Localization
Apis mellifera
Biochemical Pathway
Reproduction, Asexual
Uncinocarpus queenslandicus
Mitotic Prophase
Tissue Membrane
PIWIL1 gene

Related Feeds

Adult Stem Cells

Adult stem cells reside in unique niches that provide vital cues for their survival, self-renewal, and differentiation. They hold great promise for use in tissue repair and regeneration as a novel therapeutic strategies. Here is the latest research.

Advanced Imaging of Cellular Signaling

Cell signaling is a vital mechanism for communication within cells and outside with the environment. Several different signaling pathways have been found and advanced imaging techniques are being developed to visualize the molecules involved in these signaling pathways. Find the latest research in advanced imaging of cellular signaling here.