Jun 1, 1993

The advance of Muller's ratchet in a haploid asexual population: approximate solutions based on diffusion theory

Genetical Research
W StephanJ G Smale

Abstract

Asexual populations experiencing random genetic drift can accumulate an increasing number of deleterious mutations, a process called Muller's ratchet. We present here diffusion approximations for the rate at which Muller's ratchet advances in asexual haploid populations. The most important parameter of this process is n0 = N e-U/s, where N is population size, U the genomic mutation rate and s the selection coefficient. In a very large population, n0 is the equilibrium size of the mutation-free class. We examined the case n0 > 1 and developed one approximation for intermediate values of N and s and one for large values of N and s. For intermediate values, the expected time at which the ratchet advances increases linearly with n0. For large values, the time increases in a more or less exponential fashion with n0. In addition to n0, s is also an important determinant of the speed of the ratchet. If N and s are intermediate and n0 is fixed, we find that increasing s accelerates the ratchet. In contrast, for a given n0, but large N and s, increasing s slows the ratchet. Except when s is small, results based on our approximations fit well those from computer simulations.

  • References6
  • Citations33

Citations

Mentioned in this Paper

Genetic Drift
In Silico
Reproduction, Asexual
Genetics, Population
Haploid Cell
Genetic Equilibrium
Mutation Abnormality
Selection, Genetic

About this Paper

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.