The alkaline adenosine triphosphatase activity of 30S dynein after modification of the SH groups. Possible involvement of some of the most reactive SH groups

Journal of Biochemistry
T Shimizu

Abstract

An apparent 'triphasic' alteration of 30S dynein ATPase activity was produced by treatment with various amounts of NEM when the modification and susequent ATPase assay were carried out at pH 7.4 and pH 10-10.2, respectively. The Mg-ATPase activity was markedly inhibited by modification of the most reactive SH groups with 10 microM NEM, although the same treatment had no significant effect on the activity when assayed at neutral pH. Increasing the NEM concentration to 0.3 mM largely restored the enzyme activity, but a further increase in NEM concentration inhibited the enzyme activity again. This unusual response of 30S dynein ATPase at pH 10-10.2 was accounted for by the results of Arrhenius plots of the enzyme activity at pH 10.1; the enzyme protein modified with not more than 10 microM NEM was not stable under the assay conditions (pH 10-10.2 at 25 degrees C), whereas modification with 0.3 mM NEM stabilized 30S dynein against the assay conditions. The possible significance of the 10 microM NEM-induced inhibition of the 30S dynein alkaline ATPase activity is discussed in connection with the participation of SH groups of 30S dynein in the enzyme activity.

Related Concepts

Ethylmaleimide
4-Chloromercuribenzenesulfonate
Dynein Activity
Adenosine Triphosphatases
Neotyphodium sp. IMGERS-Plot Ic
SH2D4A protein, human
Dynein ATPase Activity
Sulfhydryl Compounds
Cilia
Enzyme Activity

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Synapse Loss as Therapeutic Target in MS

As we age, the number of synapses present in the human brain starts to decline, but in neurodegenerative diseases this occurs at an accelerated rate. In MS, it has been shown that there is a reduction in synaptic density, which presents a potential target for treatment. Here is the latest research on synapse loss as a therapeutic target in MS.

Artificial Intelligence in Cardiac Imaging

Artificial intelligence (ai) techniques are increasingly applied to cardiovascular (cv) medicine in cardiac imaging analysis. Here is the latest research.

Position Effect Variegation

Position Effect Variagation occurs when a gene is inactivated due to its positioning near heterochromatic regions within a chromosome. Discover the latest research on Position Effect Variagation here.

Social Learning

Social learning involves learning new behaviors through observation, imitation and modeling. Follow this feed to stay up to date on the latest research.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Single Cell Chromatin Profiling

Techniques like ATAC-seq and CUT&Tag have the potential to allow single cell profiling of chromatin accessibility, histones, and TFs. This will provide novel insight into cellular heterogeneity and cell states. Discover the latest research on single cell chromatin profiling here.

Genetic Screens in iPSC-derived Brain Cells

Genetic screening is a critical tool that can be employed to define and understand gene function and interaction. This feed focuses on genetic screens conducted using induced pluripotent stem cell (iPSC)-derived brain cells.