Jan 1, 1982

The atmosphere of Titan

Journal of Molecular Evolution
T Owen

Abstract

The discovery that Titan had an atmosphere was made by the identification of methane in the satellite's spectrum in 1944. But the abundance of this gas and the identification of other major constituents required the 1980 encounter by the Voyager 1 spacecraft. in the intervening years, traces of C2H2, C2H4, C2H6 and CH3D had been posited to interpret emission bands in Titan's IR spectrum. The Voyager infrared Spectrometer confirmed that these gases were present and added seven more. The atmosphere is now known to be composed primarily of molecular nitrogen. But the derived mean molecular weight suggests the presence of a significant amount of some heavier gas, most probably argon. It is shown that this argon must be primordial, and that one can understand the evolution of Titan's atmosphere in terms of degassing of a mixed hydrate dominated by CH4, N2 and 36Ar. This model satisfactorily explains the absence of neon and makes no special requirements on the satellite's surface temperature. The organic chemistry taking place on Titan today invites comparison with chemical evolution on the primitive Earth prior to the origin of life.

Mentioned in this Paper

Hyrex Brand of Dimenhydrinate
Methane
Spacecraft
Space (Astronomy)
Argon
Origin of Life
Biological Evolution

About this Paper

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Coronavirus Protein Structures

Deciphering and comparing the proteins of different coronaviruses forms a basis for understanding SARS-CoV-2 evolution and virus-receptor interactions. This feed follows studies analyzing the structures of coronavirus proteins, thereby revealing potential drug target sites.

DDX3X Syndrome

DDX3X syndrome is caused by a spontaneous mutation at conception that primarily affects girls due to its location on the X-chromosome. DDX3X syndrome has been linked to intellectual disabilities, seizures, autism, low muscle tone, brain abnormalities, and slower physical developments. Here is the latest research.

ALS: Stress Granules

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by cytoplasmic protein aggregates within motor neurons. TDP-43 is an ALS-linked protein that is known to regulate splicing and storage of specific mRNAs into stress granules, which have been implicated in formation of ALS protein aggregates. Here is the latest research.

Fusion Oncoproteins in Childhood Cancers

This feed explores the function of fusion oncoproteins in specific childhood cancers, including those from racial/ethnic minority and underserved groups, and to provide preclinical assessment of potential therapeutics and how fusion oncoproteins influence gene expression to perturb normal cellular programs to block lineage differentiation and development

Applications of Molecular Barcoding

The concept of molecular barcoding is that each original DNA or RNA molecule is attached to a unique sequence barcode. Sequence reads having different barcodes represent different original molecules, while sequence reads having the same barcode are results of PCR duplication from one original molecule. Discover the latest research on molecular barcoding here.

Regulation of Vocal-Motor Plasticity

Dopaminergic projections to the basal ganglia and nucleus accumbens shape the learning and plasticity of motivated behaviors across species including the regulation of vocal-motor plasticity and performance in songbirds. Discover the latest research on the regulation of vocal-motor plasticity here.

Mitotic-exit networks with cytokinesis

Cytokinesis is the highly regulated process that physically separates daughter and mother cells in late mitosis. The mitotic-exit network (MEN), the signalling pathway that drives mitotic exit, directly regulates cytokinesis. Discover the latest research on mitotic-exit networks with cytokinesis here.

DNA Replication Origin

DNA replication is initiated as specific gene sequences, called origins, that function to start DNA replication. Pre-replication complexes are assembled at these origins during the G1 phase of the cell cycle. These sequences allow for targeted activation or deactivation of replication. Discover the latest research on DNA replication origins here.