The behavior of effective rate constants for bimolecular reactions in an asymptotic transport regime

Journal of Contaminant Hydrology
David L Hochstetler, Peter K Kitanidis

Abstract

Previous research has shown that rate constants measured in batch tests (κ) may over-predict the amount of product formation when used in continuum models, and that these rate constants are often much greater than effective ones (κ(eff)) determined from upscaling studies. However, there is evidence that mixing is more important than the rate constants when using upscaled models. We use a numerical two-dimensional pore-scale porous medium with an approach similar to an experimental column test, and focus on the scenario of the displacement and mixing of two solutions with irreversible bimolecular reactions. Break-through curves of multiple cross-sectional averaged concentrations are analyzed for conservative and reactive transport, as well as the segregation of reactant species along the cross-sections. We compute effective parameters for the continuum scale in order to better understand the impact of using intrinsic rate constants in upscaled models. For a range of Damköhler numbers (Da), we compute effective reaction rate parameters and a reaction effectiveness factor; the latter is described by an empirical formula that depends on the Damköhler number and captures the upscaled system behavior. Our pore-scale results also conf...Continue Reading

Citations

Oct 29, 2002·Journal of Contaminant Hydrology·Olaf A Cirpka
May 2, 2008·Journal of Contaminant Hydrology·Olaf A CirpkaMarco Dentz
Nov 10, 2009·Journal of Contaminant Hydrology·Massimo RollePeter Grathwohl
Dec 22, 2009·Environmental Science & Technology·Gabriele ChiognaMassimo Rolle
Jun 22, 2010·Journal of Contaminant Hydrology·Marco DentzB Bijeljic

Related Concepts

Fluctuation
Grains
Water Movements
Organic Chemistry Processes
Pemix
DAQ
Pore
Solutions
Solute

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Synapse Loss as Therapeutic Target in MS

As we age, the number of synapses present in the human brain starts to decline, but in neurodegenerative diseases this occurs at an accelerated rate. In MS, it has been shown that there is a reduction in synaptic density, which presents a potential target for treatment. Here is the latest research on synapse loss as a therapeutic target in MS.

Artificial Intelligence in Cardiac Imaging

Artificial intelligence (ai) techniques are increasingly applied to cardiovascular (cv) medicine in cardiac imaging analysis. Here is the latest research.

Position Effect Variegation

Position Effect Variagation occurs when a gene is inactivated due to its positioning near heterochromatic regions within a chromosome. Discover the latest research on Position Effect Variagation here.

Social Learning

Social learning involves learning new behaviors through observation, imitation and modeling. Follow this feed to stay up to date on the latest research.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Single Cell Chromatin Profiling

Techniques like ATAC-seq and CUT&Tag have the potential to allow single cell profiling of chromatin accessibility, histones, and TFs. This will provide novel insight into cellular heterogeneity and cell states. Discover the latest research on single cell chromatin profiling here.

Genetic Screens in iPSC-derived Brain Cells

Genetic screening is a critical tool that can be employed to define and understand gene function and interaction. This feed focuses on genetic screens conducted using induced pluripotent stem cell (iPSC)-derived brain cells.

Related Papers

Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics
G M PortaP M Adler
Journal of Mathematical Biology
D A EdwardsD S Cohen
Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics
Yong Zhang, Charalambos Papelis
© 2020 Meta ULC. All rights reserved