PMID: 44952Jan 1, 1979

The breakdown of adenine nucleotides in glucose-depleted human red cells

Acta biologica et medica Germanica
I RapoportR Elsner

Abstract

1) The rate of 2,3-bisphosphoglycerate breakdown is independent of pH value. 2) The adenine nucleotide pattern at alkaline pH values with its characteristic lowering of ATP and the accompanying accumulation of fructose-1,6-bisphosphate is caused by a relative excess of the activity of the hexokinase-phosphofructokinase system as compared wity pyruvate kinase. 3) The breakdown of adenine nucleotides proceeds via AMP mainly through phosphatase and not via AMP deaminase. 4) The constancy of the sum of nucleotides as long as glucose is present is postulated to be due to resynthesis via adenosine kinase which competes successfully with adenosine deaminase. 5) A procedure is given to calculate ATPase activity of glucose-depleted red cells. The results indicate that the ATPase activity is less at lower pH values and declines with time. An ATPase with a high Km for ATP is postulated. 6) During glucose depletion ATP production is mostly derived from the breakdown of 2,3-bisphosphoglycerate and the supply from the pentose phosphate pool both of which proceed at a constant rate. The contribution of pentose phosphate from the breakdown of adenine nucleotides amounts to 40% of the lactate formed at pH 6.8 and is about twice the lactate at p...Continue Reading

Related Concepts

Phosphoric Monoester Hydrolases
Lactate
Sugar Phosphates
PFKM
Fructose
Adenosine Triphosphatases
Pyruvate Kinase
Pentosephosphates
Hexokinase
HK1

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Synapse Loss as Therapeutic Target in MS

As we age, the number of synapses present in the human brain starts to decline, but in neurodegenerative diseases this occurs at an accelerated rate. In MS, it has been shown that there is a reduction in synaptic density, which presents a potential target for treatment. Here is the latest research on synapse loss as a therapeutic target in MS.

Artificial Intelligence in Cardiac Imaging

Artificial intelligence (ai) techniques are increasingly applied to cardiovascular (cv) medicine in cardiac imaging analysis. Here is the latest research.

Position Effect Variegation

Position Effect Variagation occurs when a gene is inactivated due to its positioning near heterochromatic regions within a chromosome. Discover the latest research on Position Effect Variagation here.

Social Learning

Social learning involves learning new behaviors through observation, imitation and modeling. Follow this feed to stay up to date on the latest research.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Single Cell Chromatin Profiling

Techniques like ATAC-seq and CUT&Tag have the potential to allow single cell profiling of chromatin accessibility, histones, and TFs. This will provide novel insight into cellular heterogeneity and cell states. Discover the latest research on single cell chromatin profiling here.

Genetic Screens in iPSC-derived Brain Cells

Genetic screening is a critical tool that can be employed to define and understand gene function and interaction. This feed focuses on genetic screens conducted using induced pluripotent stem cell (iPSC)-derived brain cells.