Jul 25, 1976

The carbamate reaction of glycylglycine, plasma, and tissue extracts evaluated by a pH stopped flow apparatus

The Journal of Biological Chemistry
G GrosL Lin


We have used a stopped flow rapid reaction pH apparatus to investigate the carbamate equilibrium in glycylglycine solutions and in three biological tissues, human plasma, sheep muscle, and sheep brain, as well as to investigate the kinetics of carbamate formation in glyclyglycine solution and in human plasma. The rapid reaction apparatus was equipped with a pH sensitive glass electrode in order to follow the time course of pH from 0.005 to 100 s after rapid mixing of a solution of amine or protein and CO2. Two phases of the pH curve were observed: a fast phase representing carbamate formation, and a slow phase due to the hydration of CO2 which was uncatalyzed since a carbonic anhydrase inhibitor was added to the biological solutions. From the time course of pH change during the fast phase K2, the R-NH2 ionization constant, and Kc, the carbamate equilibrium constant as well as the velocity constant for the formation of carbamate, ka could be calculated from data at different pH and pCO2. The carbamate formed in glycylglycine solutions over a wide range of pH and pCO2 was found consistent with the theory of carbamate formation and with published data. At ionic strength 0.16 and 37 degrees pK is 7.67. pKc 4.58. The heat of the car...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Human plasma
Tissue Specificity
Tissue Extracts
Glycylglycine Monohydrochloride
Staphylococcal Protein A
Sheep antigen

About this Paper

Related Feeds

ASBMB Publications

The American Society for Biochemistry and Molecular Biology (ASBMB) includes the Journal of Biological Chemistry, Molecular & Cellular Proteomics, and the Journal of Lipid Research. Discover the latest research from ASBMB here.