Oct 17, 2019

The cryo-EM structure of the bacterial flagellum cap complex suggests a molecular mechanism for filament elongation.

BioRxiv : the Preprint Server for Biology
Natalie S Al-OtaibiJulien R.C. Bergeron


The bacterial flagellum is a remarkable molecular motor, present at the surface of many bacteria, whose primary function is to allow motility through the rotation of a long filament protruding from the bacterial cell. A cap complex, consisting of an oligomeric assembly of the protein FliD, is localized at the tip of the flagellum, and is essential for filament assembly, as well as adherence to surfaces in some bacteria. However, the structure of the intact cap complex, and the molecular basis for its interaction with the filament, remains elusive. Here we report the cryo-EM structure of the Campylobacter jejuni cap complex. This structure reveals that FliD is pentameric, with the N-terminal region of the protomer forming an unexpected extensive set of contacts across several subunits, that contribute to FliD oligomerization. We also demonstrate that the native C. jejuni flagellum filament is 11-stranded and propose a molecular model for the filament-cap interaction.

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Molecular Motor Activity
Cap-Binding Protein Complex
Cell Motility
FlaD protein, Bacteria
Bacterial-type Flagellum Filament Cap
Drug Interactions
Nucleic Acid Strand

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Campylobacteriosis (ASM)

Campylobacteriosis is caused by the bacteria Campylobacter jejuni and is a common cause of gastroenteritis in humans. Discover the latest research on Campylobacteriosis here.