Nov 5, 2018

The CspC pseudoprotease regulates germination of Clostridioides difficile spores in response to multiple environmental signals

BioRxiv : the Preprint Server for Biology
Amy E RohlfingAimee Shen

Abstract

The gastrointestinal pathogen, Clostridioides difficile , initiates infection when its metabolically dormant spore form germinates in the mammalian gut. While most spore-forming bacteria use transmembrane germinant receptors to sense nutrient germinants, C. difficile uses the soluble pseudoprotease, CspC, to detect bile salt germinants. To gain insight into CspC's unique mechanism of action, we solved its crystal structure. Guided by this structure, we identified CspC mutations that confer either hypo- or hyper-sensitivity to bile salt germinant. Surprisingly, hyper-sensitive CspC variants exhibited bile salt-independent germination as well as increased sensitivity to amino acid and/or calcium co-germinants. Since the mechanism by which C. difficile spores sense co-germinants is unknown, our study provides the first evidence that CspC senses distinct classes of co-germinants in addition to bile salts. Since we observed that specific residues control CspC's responsiveness to these different signals, CspC is critical for regulating C. difficile germination in response to multiple environmental signals.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Study
Calcium [EPC]
Bile Acid Measurement
Calcium
Pathogenic Organism
Environment
Reproduction Spores
CspC protein, bacteria
Nutrients
Integral to Membrane

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.