The Detailed 3D Multi-Loop Aggregate/Rosette Chromatin Architecture and Functional Dynamic Organization of the Human and Mouse Genomes

BioRxiv : the Preprint Server for Biology
Tobias A KnochFrank G Grosveld


The dynamic three-dimensional chromatin architecture of genomes and its co-evolutionary connection to its function - the storage, expression, and replication of genetic information - is still one of the central issues in biology. Here, we describe the much debated 3D-architecture of the human and mouse genomes from the nucleosomal to the megabase pair level by a novel approach combining selective high-throughput high-resolution chromosomal interaction capture (T2C), polymer simulations, and scaling analysis of the 3D-architecture and the DNA sequence: The genome is compacted into a chromatin quasi-fibre with ~5+-1 nucleosomes/11nm, folded into stable ~30-100 kbp loops forming stable loop aggregates/rosettes connected by similar sized linkers. Minor but significant variations in the architecture are seen between cell types/functional states. The architecture and the DNA sequence show very similar fine-structured multi-scaling behaviour confirming their co-evolution and the above. This architecture, its dynamics, and accessibility balance stability and flexibility ensuring genome integrity and variation enabling gene expression/regulation by self-organization of (in)active units already in proximity. Our results agree with the he...Continue Reading

Related Concepts

Enzyme Stability
Biological Evolution
Laboratory mice
Virus Replication
DNA Sequence

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.