Jan 29, 2014

The disruption of trace element homeostasis due to aneuploidy as a unifying theme in the etiology of cancer

BioRxiv : the Preprint Server for Biology
Johannes EngelkenRenty B Franklin

Abstract

Abstract for Scientists While decades of cancer research have firmly established multiple “hallmarks of cancer” [1][1],[2][2], cancer’s genomic landscape remains to be fully understood. Particularly, the phenomenon of aneuploidy – gains and losses of large genomic regions, i.e. whole chromosomes or chromosome arms – and why most cancer cells are aneuploid remains enigmatic [3][3]. Another frequent observation in many different types of cancer is the deregulation of the homeostasis of the trace elements copper, zinc and iron. Concentrations of copper are markedly increased in cancer tissue and the blood plasma of cancer patients, while zinc levels are typically decreased [4][4]–[9][5]. Here we discuss the hypothesis that the disruption of trace element homeostasis and the phenomenon of aneuploidy might be linked. Our tentative analysis of genomic data from diverse tumor types mainly from The Cancer Genome Atlas (TCGA) project suggests that gains and losses of metal transporter genes occur frequently and correlate well with transporter gene expression levels. Hereby they may confer a cancer-driving selective growth advantage at early and possibly also later stages during cancer development. This idea is consistent with recent obs...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

TP53 gene
ErbB-2 Receptor
MYCN gene
Study
Tumor Cells, Uncertain Whether Benign or Malignant
Basic Research
Immune System
Chromosome Structures
BRCA1 protein, human
Research

Related Feeds

Cancer Genomics

Cancer genomics employ high-throughput technologies to identify the complete catalog of somatic alterations that characterize the genome, transcriptome and epigenome of cohorts of tumor samples. Discover the latest research here.

Cancer Genomics (Preprints)

Cancer genomics employ high-throughput technologies to identify the complete catalog of somatic alterations that characterize the genome, transcriptome and epigenome of cohorts of tumor samples. Discover the latest preprints here.

Breast Cancer: BRCA1 & BRCA2

Mutations involving BRCA1, found on chromosome 17, and BRCA2, found on chromosome 13, increase the risk for specific cancers, such as breast cancer. Discover the last research on breast cancer BRCA1 and BRCA2 here.

Apoptosis in Cancer

Apoptosis is an important mechanism in cancer. By evading apoptosis, tumors can continue to grow without regulation and metastasize systemically. Many therapies are evaluating the use of pro-apoptotic activation to eliminate cancer growth. Here is the latest research on apoptosis in cancer.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Apoptosis

Apoptosis is a specific process that leads to programmed cell death through the activation of an evolutionary conserved intracellular pathway leading to pathognomic cellular changes distinct from cellular necrosis

American Thoracic Society: Allergy, Immunology & Inflammation

This feed has been developed in conjunction with the American Thoracic Society for the benefit of its Allergy, Immunology, and Inflammation Assembly. It highlights new and impactful papers on allergy, asthma, genetics, and the pathogenesis of lung diseases.

Breast Cancer: Therapeutic Approaches

Several different therapeutic approaches are used to treat breast cancer. These include chemotherapy, hormonal therapy, targeted therapy, and Immunotherapy. Discover the latest research on breast cancer therapeutic approaches here.

Cancer Genomics (Keystone)

Cancer genomics approaches employ high-throughput technologies to identify the complete catalog of somatic alterations that characterize the genome, transcriptome and epigenome of cohorts of tumor samples. Discover the latest research using such technologies in this feed.

© 2020 Meta ULC. All rights reserved